Deformations and embeddings of three-dimensional strictly pseudoconvex CR manifolds

نویسندگان

چکیده

Abstract deformations of the CR structure a compact strictly pseudoconvex hypersurface M in $${\mathbb {C}}^2$$ are encoded by complex functions on M. In sharp contrast with higher dimensional case, natural integrability condition for 3-dimensional structures is vacuous, and generic $$M\subseteq {\mathbb not embeddable even {C}}^N$$ any N. A fundamental (and difficult) problem to characterize when function $$M \subseteq gives rise an actual deformation inside . this paper we study embeddability families given embedded 3-manifold, space $$S^3$$ We show that standard 3-sphere Frechet submanifold $$C^{\infty }(S^3,{\mathbb {C}})$$ near origin. establish modified version Cheng–Lee slice theorem which able precisely (in terms spherical harmonics). also introduce canonical family corresponding embeddings starting infinitesimally unit sphere

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embeddings for 3-dimensional CR-manifolds

We consider the problem of projectively embedding strictly pseudoconcave surfaces, X− containing a positive divisor, Z and affinely embedding its 3dimensional, strictly pseudoconvex boundary, M = −bX−. We show that embeddability ofM in affine space is equivalent to the embeddability ofX− or of appropriate neighborhoods of Z inside X− in projective space. Under the cohomological hypotheses: H2 c...

متن کامل

Embeddability of Some Strongly Pseudoconvex Cr Manifolds

We obtain an embedding theorem for compact strongly pseudoconvex CR manifolds which are bounadries of some complete Hermitian manifolds. We use this to compactify some negatively curved Kähler manifolds with compact strongly pseudoconvex boundary. An embedding theorem for Sasakian manifolds is also derived.

متن کامل

Strictly Pseudoconvex Spin Manifolds, Feeerman Spaces and Lorentzian Twistor Spinors

We prove that there exist global solutions of the twistor equation on the Fef-ferman spaces of strictly pseudoconvex spin manifolds of arbitrary dimension and we study their properties.

متن کامل

Embedding Compact Strongly Pseudoconvex Cr Manifolds of Class C

In this paper we derive maximal pointwise Hölder estimates for the Kohn’s Laplacian on strongly pseudoconvex CR manifolds of class C3 using the Tanaka-Webster Pseudohermitian metric. The estimates can be used to improve the Boutet De Monvel’s embedding theorem for strongly pseudoconvex compact CR manifolds of real dimension greater or equal to five with less smoothness assumption.

متن کامل

On Weakly Pseudoconvex Cr Manifolds of Dimension 3

Let M be a compact, COO CR manifold of dimension 3 over R. Associated to the CR structure is a first-order differential operator, Db' on M. We study the regularity properties, in terms of L P Sobolev and Holder norms, of the equation Db u = f. M is said to be CR if there is given a COO sub-bundle, denoted T I .o M , of the complexified tangent bundle TM, such that each fiber T~'o M is of dimens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2023

ISSN: ['1432-1807', '0025-5831']

DOI: https://doi.org/10.1007/s00208-023-02658-y